肺癌仍然是全球癌症相關死亡的主要原因,早期檢測面臨巨大挑戰,主要是因為診斷依賴於俊入性方法,且大多數檢測仍需在實驗室環境中進行。管微流控品片在液體活檢樣本中對循環腫瘤細胞(CTC)的分析已有所進展,但目前大多數方法依賴於靜態影像分析,這在模擬生理條件的動態流體環境中會影響準確性。本研究提出了一種新穎的方法,利用改進的 YOLOV8 模型 進行動態磁珠分析,以檢测CTC,並引入 Squeeze-and-Excitation (SE)區塊、全域注意力機制(GAM)和 Soft非極大值抑制(Sofi-NMS)進行後處理。這些架構調整解決了空間注意力與特徽重新校準的問題,優化了模型在動態流體條件下的性能。本研究開發的模型在基於微流控品片的動態流體千台上進行了嚴格測試,結果顯示其檢測準確性優於傳統的靜態分析方法。此外,為了提升 CIC 檢測在即時檢测(Point-of-Care Testing, POCT)中的適應性,本研究還閒發了一款 便攜式設備,該設備將動態流體千台與嵌入式運算單元結合,以優化即時數據處理和診斷。該設備具備輕量化設計和嵌入式人工智慧(AI)能力,使其能夠在多種環(包括資源有限的地區)中穩定運行。比較實驗結果顯示,所提出的設備在檢測準確性方面表現優異,其計數準確度超過90%,與經過訓練的人工計數的真實數據相比,正確識別計數與總體真實計數的比率約為0.90:1,顯示出自動檢測系統與人工計數之問高度的一致性(90%)。即使在不同的流體條件下,該模型仍能保持穩定的準確性,展現出其穩健性及降低人工密集型診新流程的潛力。這些研究結果進一步證實了該方法在即時檢測(POCT)中的實際可行性,為肺癌早期診斷提供了一種具有前景的解決方案,特別適用於分散式醫療保健環,因為在這類環境中,可及性強且非侵入式的檢測方式對於及時醫療介入至關重要。此外,將先進的人工智慧技術整合到便攜式平台中,標誌著癌症早期診斷領域的重要進展,使其在多種臨床環境中更高效、可及性更強,且具有更好的可擴展性。
Lung cancer remains the primary cause of cancer-related mortality worldwide, with carly detection posing substantial challenges due to the reliance on invasive diagnostic methods predominantly performed in laboratory settings. Despite advancements in microfluidic-chip applications for circulating tumor cell (CTC) analysis using liquid biopsy samples, most existing approaches rely on static image analysis, limiting their accuracy in dynamic fluid environments typical of physiological conditions. This study introduces a novel approach to dynamic magnetic bead analysis for CTC detection using an improved YOLOv8 model, improved with Squeeze-and-Excitation (SE) blocks, Global Attention Mechanism (GAM), and Soft Non-Maximum Suppression (Soft-NMS) post-processing. These architectural adjustments address spatial attention and feature recalibration challenges, optimizing model performance under dynamic fluidic conditions. The proposed model was rigorously tested on a microfluidic chip-based dynamic fluid platform, demonstrating superior detection accuracy over traditional static-based methodologies. Moreover, to enhance the adaptability of CTC detection for Point-of-Care Testing (POCT), this study also developed a portable device that integrates the dynamic fluid platform and an embedded computing unit to streamline real-time data processing and diagnosis. This device's lightweight design and embedded Al capabilities allow it to perform consistently in various settings, including low-resource environments. Comparative experimental results demonstrated that the proposed device achieved high performance, with counting accuracy exceeding 90% compared to ground truth data manually counted by trained attendants. The ratio of correctly identified counts to the total ground truth count was approximately 0.90:1, indicating a high level of agreement (90%) between the automated detection system and manual counting. The consistent accuracy, even under varying fluidic conditions, highlights" the model's robustness and its potential to reduce labor-intensive diagnostic procedures. These findings reinforce the practical viability of this approach for point-of-care testing (POCT), providing a promising solution for early-stage lung cancer diagnostics in decentralized healthcare settings, where accessible and non-invasive testing is critical for timely medical intervention. Furthermore, the integration of advanced Al techniques within a portable platform represents a significant advancement, making early cancer diagnostics more efficient, accessible, and scalable across diverse clinical environments.
展性。肺癌仍然是全球癌症相關死亡的主要原因,早期檢測面臨巨大挑戰,主要是因
為診斷依賴於俊入性方法,且大多數檢測仍需在實驗室環境中進行。管微流控品
片在液體活檢樣本中對循環腫瘤細胞(CTC)的分析已有所進展,但目前大多數方
法依賴於靜態影像分析,這在模擬生理條件的動態流體環境中會影響準確性。本研
究提出了一種新穎的方法,利用改進的 YOLOV8 模型 進行動態磁珠分析,以檢测
CTC,並引入 Squeeze-and-Excitation (SE)區塊、全域注意力機制(GAM)和 Soft
非極大值抑制(Sofi-NMS)進行後處理。這些架構調整解決了空間注意力與特徽重
新校準的問題,優化了模型在動態流體條件下的性能。本研究開發的模型在基於微流控品片的動態流體千台上進行了嚴格測試,結果顯示其檢測準確性優於傳統的靜
態分析方法。此外,為了提升 CIC 檢測在即時檢测(Point-of-Care Testing, POCT)
中的適應性,本研究還閒發了一款 便攜式設備,該設備將動態流體千台與嵌入式運
算單元結合,以優化即時數據處理和診斷。該設備具備輕量化設計和嵌入式人工智
悲(AI)能力,使其能夠在多種環(包括資源有限的地區)中穩定運行。比較實
驗結果顯示,所提出的設備在檢測準確性方面表現優異,其計數準確度超過90%,
與經過訓練的人工計數的真實數據相比,正確識別計數與總體真實計數的比率約為
0.90:1,顯示出自動檢測系統與人工計數之問高度的一致性(90%)。即使在不同的
流體條件下,該模型仍能保持穩定的準確性,展現出其穩健性及降低人工密集型診
新流程的潛力。這些研究結果進一步證實了該方法在即時檢測(POCT)中的實際可
行性,為肺癌早期診斷提供了一種具有前景的解決方案,特別適用於分散式醫療保
健環,因為在這類環境中,可及性強且非侵入式的檢測方式對於及時醫療介入至
關重要。此外,將先進的人工智慧技術整合到便攜式平台中,標誌著癌症早期診斷
領域的重要進展,使其在多種臨床環境中更高效、可及性更強,且具有更好的可換
展性。